t^2+39=97

Simple and best practice solution for t^2+39=97 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t^2+39=97 equation:



t^2+39=97
We move all terms to the left:
t^2+39-(97)=0
We add all the numbers together, and all the variables
t^2-58=0
a = 1; b = 0; c = -58;
Δ = b2-4ac
Δ = 02-4·1·(-58)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{58}}{2*1}=\frac{0-2\sqrt{58}}{2} =-\frac{2\sqrt{58}}{2} =-\sqrt{58} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{58}}{2*1}=\frac{0+2\sqrt{58}}{2} =\frac{2\sqrt{58}}{2} =\sqrt{58} $

See similar equations:

| 36^x=216^-3x+1 | | w+17=70 | | z÷65=13 | | y-3.7=18 | | 3x+4−5(6+2x)=9−3(3x−7) | | 9q+3=8q-8 | | s· 45= 49 | | 9q+3=8q-11 | | 20+10=28+8x | | y-3.75=18 | | 3(x–4)=12x+9 | | C=50h+20 | | 6x−15=39. | | 5/2b-23/4=71/4 | | 5x-6=-4+21 | | (x–7)(x+5)=0 | | 4*(2x-5)-3x=-35 | | 208-y=121 | | 1/2(8x+6)+4x=2(4x+3) | | ½(8x+6)+4x=2(4x+3) | | x•15=60 | | -6.6x=-46.2 | | -20y=-1 | | 3-(4x-3)=10 | | 1=2x^2-11x | | (3x+8)°=35 | | 4m^2+19=19 | | 5y^2=-5 | | a-4=39 | | Y=6-0.25^x | | m^2+0=0 | | 6x-31=2-5x |

Equations solver categories